Drainage Density as Rainfall Induced Landslides Susceptibility Index in Small Catchment Area

Hasegawa S.\(^1\), Nonomura A.\(^1\), Nakai S.\(^2\), Dahal R. K.\(^3\)

\(^1\)Faculty of Engineering, Kagawa University, Takamatsu, Kagawa, Japan
\(^2\)Fukken Co., Ltd., Hiroshima, Japan
\(^3\)Department of Geology, Tri-Chandra Campus Tribhuvan University, Kathmandu, Nepal

Keywords: Drainage density, susceptibility index, rainfall induced landslide, rainfall index R'
5 Relation between drainage density and rainfall index R'

Fig. 5 shows relation between drainage density and rainfall index R'. Lowest value of R' decreases, as drainage density increases. This indicates that drainage density will be a good susceptibility index for rainfall-induced landslides and debris flows in small catchment area.

![Fig 5. Relation between drainage density and rainfall index R'](image)

6 Conclusion

Drainage density is easy to measure without field survey. Drainage density would be good index for estimating evacuation rainfall by small catchment-base where past disaster data are not available. Therefore, study of drainage density is practical approach for disaster management.

Acknowledgements

We express sincere gratitude to Mrs. Ryo Ikegami and Toru Kawase for their help in measuring drainage density and R'. We also express sincere gratitude to all Agencies who have provided rainfall data during disasters.

References

4 Rainfall index R'

Rainfall indexes relating to rainfall-induced landslides and debris flows usually have two parameters: short-term parameter such as rainfall intensity and long-term parameter such as duration. These rainfall indexes are not applicable to comparison with drainage density. Therefore, a new rainfall index R' proposed by Nakai et al. (2008) is introduced for this study. R' has a single value comprising two kinds of influence by long term and short-term rainfalls (Fig.4)

$$R' = R_W - R_f$$

$$R_f = (R_l - R_i)^{2} + a^2 (r_l - r_i)^{2}$$

Where

- R_w: Long-term effective rainfall (mm),
- R_f: Short-term effective rainfall (mm),
- R_l: Point of reference on horizontal axis
- r_l: Point of reference on vertical axis
- a: Weight of coefficient
- R_w0: Value of R_w when Long-term and short-term effective rainfall are zero

![Fig 4. Definition of the rainfall index R_f and R'](image)